חAmibia UחIVERSITY OF SCIEПCE AПD TECHחOLOGY

Faculty of Health and Applied Sciences

Department of Mathematics and Statistics

QUALIFICATION: Bachelor of Science Mathematics and Statistics	
QUALIFICATION CODE: O7BAMS, 07BOSC.	LEVEL: 5
COURSE: LINEAR ALGEBRA 1	COURSE CODE: LIA502S
DATE: JUNE 2019	SESSION: SEMESTER1 2019
DURATION: 180 minutes	MARKS: 93

FIRST OPPORTUNITY QUESTION PAPER	
EXAMINER(S)	Dr IKO AJIBOLA
MODERATOR:	

THIS QUESTION PAPER CONSISTS OF 2 \qquad
(Including this front page)

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

QUESTION 1 (24 marks)

1.1 If $u=(1,-3,4)$ and $v=(3,4,7)$ are vectors in R^{3}. Find
1.1.1 θ, of the angle between u and v.
1.1.2 $\operatorname{proj}(u, v)$, of u unto v
1.1.3 $\mathrm{d}(\mathrm{u}, \mathrm{v})$, the distance between u and v
1.2 Suppose $u=3 i+5 j-2 k$ and $v=4 i-8 j+7 k$ Find:
1.2.1 the vector $3 u+5 v$
1.2.2 the scalar $u \cdot v$
1.2.3 the value of $\left\|\frac{1}{u}\right\|\|v\|$

QUESTION 2 (25 marks)

2.1 Express
$v=(1,-2,5)$ in R^{3} as a linear combination of the vectors
$u_{1}=(1,1,1), \quad u_{2}=(1,2,3), \quad u_{3}=(2,-1,1)$
2.2 Express the polynomial $v=t^{2}+4 t-3$ in $\mathbf{P}(\mathrm{t})$ as a linear combination of the polynomials $p_{1}=t^{2}-2 t+5, p_{2}=2 t^{2}-3 t, p_{3}=t+1$.

QUESTION 3 (12 marks)

$$
\text { If } \quad A=\left[\begin{array}{lll}
1 & 1 & 1 \tag{12}\\
0 & 1 & 2 \\
1 & 2 & 4
\end{array}\right] \text { Find } \quad A^{-1}=\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
z_{1} & z_{2} & z_{3}
\end{array}\right]
$$

by using the product $A A^{-1}=I$ as an identity.

QUESTION 4 (22 marks)

4.1 Find $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$ where $3\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & 2 t\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+t & 3\end{array}\right]$

$$
x+2 y-z=3
$$

4.2 Solve the following system using its augmented matrix M. $x+3 y+z=5$

$$
\begin{equation*}
3 x+8 y+4 z=17 \tag{12}
\end{equation*}
$$

QUESTION 5 (10 marks)

Use the definition to investigate whether the polynomials $p_{1}(t)=2 t^{2}+3 t+4, p_{2}(t)=t^{2}-3 t$ and $p_{3}(t)=4 t-5$ are linearly dependent or linearly independent.

